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Love, Death, and Taxes: Applications of Real Options in Economic Systems 
 
 

Introduction 

Modern economic systems have become increasingly complex as changes in the 

environment continue at warp speed. As complexity increases, risk also increases. Various 

stakeholders in these economic systems have applied vast amounts of intellectual and financial 

capital to develop mechanisms to describe and discuss complexity, harvest rewards/value from it, 

and manage the attendant risk. The critical platform for such endeavors, however, has remained 

virtually the same for over 500 years. It is a humdrum discipline called financial accounting. 

Basic financial accounting is structured on a set of generally useful rules by which all 

agents within economic systems can describe themselves, their net resources, and their activities 

in a common language. This common language enables transactions to take place at all levels in 

the markets on a reasonably level playing field. It provides for the exchange of more or less 

complete information between parties. It provides the base on which strategic planning and 

competitive games can be designed and implemented. While the taxing and other regulatory 

authorities have introduced high levels of complexity into basic accounting systems, it is 

accounting systems that allow them to set their “handicaps” (game restrictions) and fund their 

activities. Current financial accounting rules are complicated but workable because, in the end, 

every agent resource and activity can be traced back to cash, the fundamental unit and common 

denominator of real-world exchange. 

Although financial accounting serves a critical purpose that cannot be replaced, dynamic 

changes in the environment and the economic systems that populate it have created 

communications issues regarding the effects of such changes on firms. Since financial 
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accounting is the common language for business resources and activities, it has gotten routinely 

criticized for not measuring up to the challenges in the environment, for not being able to 

represent the intangible and the esoteric in a universally accepted way. While no one has asked if 

any other discipline could do better, accounting regulators worldwide have made the decision to 

opt for “relevance” over “reliability” and invented a new discipline, Fair Value accounting, 

codified in November 2007 in Statement of Financial Accounting Standards No. 157, “Fair 

Value Measurement.” 

To those not interested or embroiled in accounting or valuation, it seems an innocuous 

move. Many in the finance community have welcomed it as an improvement over the dinosaur of 

historical cost basis accounting. Whether we know or care about SFAS 157, it is about to change 

all worlds. In effect, it has altered the base language of economic systems radically, in favor of 

constructed markets and hypothetical events built on valuation principals, rather than real-world 

ones based in actual transactions. While for years valuation professionals and in-house corporate 

finance teams have grappled with how to assign values to specific firm resources and projects 

without ignoring the other resources and projects that contribute to such values, this problem was 

primarily confined to the context of business acquisitions and certain types of business entities. 

The new Fair Value standard subjects the entire balance sheet (and income statement) of all 

firms to such treatment on an ongoing basis, effectively disaggregating the firm.  

Since the contents of financial reports flow back into the markets as information on 

which real-world decisions are made at every level, fair value reporting will create significant 

and unforeseen effects in the “state of the system.” New approaches to collecting and analyzing 

market and firm data will be required to manage the introduction of increased levels of 

subjectivity into these data.  
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This conceptual paper discusses a number of the challenges generated by economic 

system complexity and several of the solutions being offered. It demonstrates that the firm is an 

economic system in its own right and can be analyzed as such. It presents an approach to firm 

organizational design and valuation, using applications of real options “in” economic systems, 

and describes its relevance to the problems created by SFAS 157. It concludes with a 

presentation of avenues for future research. 

I. Problem Statement 

Modern economic systems are experiencing exponential growth in complexity, 

interdependence, and risk. The events creating such dramatic changes in the environment 

have been well discussed and analyzed by a broad range of stakeholders. Many of these are 

actively searching for improved methods of dealing with them. But non-proprietary, 

effective solutions are few and far between. The Financial Accounting Standards Board 

and its international counterpart, the International Accounting Standards Board, have 

recently added to the complexity by moving financial accounting away from its historical 

transaction basis (i.e., cost and cash) toward a prospective valuation basis (i.e., estimates 

and opinion). Assuming that this direction cannot be altered, the valuation profession will 

have to develop better tools to accomplish the mandates set before it. Real options analysis 

may offer such tools.   

There is a nested set of related problems arising from this central one. A number of the 

key ones are stated following. 

Dynamic changes in the environment are affecting the use of financial accounting, the 

foundational language and tool of modern economic systems.  
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The following are an abbreviated list of changes that have caused so much frustration to 

be directed at financial accounting. 

Change 1: The “discovery” and influence of intangible assets on organizational 

structure, growth, complexity and value. As market attention has shifted toward intangible 

assets and away from tangible ones as the source of firm value, financial accounting faces a 

dilemma. It has to devise methods of measuring and recording the influence of such assets on the 

organization and its benefit streams (i.e. outputs). Yet, most of these assets are neither separable 

nor transferable, two attributes necessary for resource measurement and exchange. 

Change 2: The explosion of operating and financial complexity in economic systems 

worldwide. Industry and cross-industry consolidation, globalization, and new and exotic markets, 

industries and products requires an increasingly broad range of organizational and transaction 

structures, many of which are highly complex. Financial accounting has been asked to address 

such complexity in meaningful and accurate ways.  

Change 3: The increased presence of governmental and regulatory influence over 

every area of life. Organizations are expending massive amounts of time and resources to adapt 

to and mitigate the requirements of government and regulatory bodies. Tax rules continue to 

burgeon. Financial accounting must keep pace with the constant turbulence. 

Change 4: The exponential increase in market and transaction complexity. 

Increasingly sophisticated investment vehicles, enhanced computer-based trading and desk-top 

trading, 24x7 markets, global currency flows, Internet collaboration, consolidating exchanges 

and exchanges that operate as public companies – these all feed on and generate financial 

information on a real-time basis. Financial accounting is being asked to incorporate high levels 
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of complexity and speed into procedures and processes that were designed for lower levels of 

both. 

Change 5: The increased potential of unforeseen and/or unforeseeable random acts of 

violence that disrupt economic systems on a global scale. Dr. Nassim Taleb calls these “black 

swans” and suggests that there is “. . . an ingrained tendency in humans to underestimate outliers 

. . . Left to our own devices, we tend to think that what happens every decade in fact only 

happens once every century, and, furthermore, that we know what’s going on.” (Taleb, 

2007:141).  

Increased complexity and turbulence create increased, and different, sources of risk, as 

well as new sets of questions. 

Can modern economic systems afford to view risk and complexity in the traditional way? 

Should financial reporting more explicitly reflect the complexity and risk inherent in 

organizational resources and activities? Do we need better methods of describing both the state 

of the system and the economic systems functioning within it? Do modern economic systems 

actually function in the ways that are commonly described in the traditional literature and 

financial reporting? If they do not, how should we describe them? These are just a few of the 

issues that arise from the scale and scope of change within the global economic environment. 

Financial valuation, yesterday’s red-headed stepchild, has become today’s darling as we 

attempt to resolve such issues. But is she ready? 

Financial valuation, an esoteric hybrid of all business disciplines, is currently practiced in 

a linear, deterministic, but prospective, manner with varying degrees of rigor. There are many 

theoretical and practical issues on which no two valuation analysts fully agree. For this field, 

governed by informed professional judgment, beauty is truly in the eyes of the beholder. SFAS 



 6 

157 institutes financial valuation as the arbiter of value for the net resources, and related benefit 

streams, of the firm for financial reporting purposes. Yet financial valuation has its own set of 

disabilities that have not been resolved.   

Example 1: Traditional valuation approaches no longer suffice to capture the complex 

realities of dynamic economic systems. These same approaches will also be inadequate to meet 

the demands of fair value accounting.  

Example 2: Non-linear valuation approaches, such as real options analysis, contain 

complexities and challenges that are beyond the average practitioner (e.g., difficulties in 

developing fundamental inputs for the models; difficulties of creating consistent structure and 

repeatability of RO problems and solutions; a low level of computational transparency for 

average users; no standardized methods for checking projected results against actual ones). What 

makes the post-SFAS 157 world different is that, although these familiar challenges will 

continue to inhere in real options analysis, the same challenges will now inhere in all aspects of 

accounting, a non-finance discipline. This, in turn, will ensure that a high degree of subjectivity 

and complexity will become embedded in both financial reporting and market prices.  

The remainder of this paper will explore the potential contribution of real options 

analysis to resolving the stated problems.  

II. Review of the Relevant Literature 

To gain a fresh perspective, the fundamental research for this paper takes an eclectic 

approach, drawing on academic research, academic books, practitioner manuals and papers, 

Financial Accounting Standards Board pronouncements, and the popular press in a variety of 

disciplines such as valuation, real options analysis and risk management, physics and complexity 

science, and insider tips from “The Street.” The focus was to: 
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• Explore the manner in which various agents within dynamic global economic 

systems describe, structure, and leverage increasingly high degrees of complexity 

and risk in the system; 

• Identify what appear to be the most powerful and genuinely useful approaches to 

provide rigorous solutions to the stated problems. 

Overview of Findings 

At the top level, research findings were widely varied. The common theme was, “How do 

we deal with and create/harvest value from increasingly complex and risky systems?” Proposed 

solutions seemed to pursue three directions: 1) build complex models to describe and manage 

increasing complexity; 2) build simplified models to describe and manage increasing 

complexity; 3) build layered models that reduce complexity as they progress through a sequence. 

All of these approaches involve varying degrees of computational complexity and 

potential/actual “black boxes,” i.e. lack of transparency. 

The following are examples of approaches based on building complex models to describe 

and manage complex systems. They are both taken from the field of valuation and are written by 

practitioners, thus are not part of a body of academic literature.  

Complex Models to Describe and Manage Complex Economic Systems 

Model 1: Valuation of complex capital structures: “Th[e] growing trend toward fair 

value presents significant challenges in valuing privately-held companies with complex capital 

structures. Because it is necessary to first value those securities with superior claims to common 

equity, many valuation specialists, auditors, and financial executives now find themselves forced 

to enter a jungle of complex capital valuation. Depending upon the provisions associated with 

the components of a complex capital structure, accurate valuation of common stock in this 
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environment may require sophisticated simulation models. Until recently, however, there was 

very little guidance – much less convergence of thought . . . within the appraisal community. 

Even where such guidance exists, it is unnecessarily conflicting, and more important, incapable 

of handling such commonplace features as cash distributions prior to liquidity events and 

performance-based vesting.” [Chamberlain et al, 2007: 1] 

To address this challenge, a team of valuation professionals and academics propose a 

methodology, based in simulation techniques, to integrate two extant valuation methods, the 

Options Pricing Method (OPM) and the Probability Weighted Expected Return Method 

(PWERM). These two methods are commonly used in the field, having been propounded in a 

2004 AICPA Practice Aid, “Valuation of Privately-Held-Company Equity Securities Issued as 

Compensation.”  

“OPM takes as a starting point the current enterprise value and, using a volatility estimate 

that captures the market risk of the underlying business, models the stochastic evolution of this 

value over time. The various equity classes are then viewed as [European] option-like claims on 

this underlying value . . .” [Chamberlain et al, 2007: 4] The OPM is performed using the closed-

form Black-Scholes option pricing method which does not allow for performance-based vesting 

or other path-dependent events. 

“PWERM explicitly takes into account the random nature and timing of potential future 

liquidity events. . . . [C]urrent enterprise value is the probability-weighted sum of the discounted 

future liquidity outcomes.” [Chamberlain et al, 2007: 4-5] The discount rate utilized is that of the 

underlying asset, thus preventing the method from capturing the changes in risk over time and 

over equity classes. 
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The integrative method incorporates the following steps: 1) Determining the risk-neutral 

distribution of underlying asset values; 2) simulate future asset values using this distribution and 

the selected end-points that represent various liquidity events; 3) infer benefit stream paths 

(EBITDA, cash flow) from these asset value paths; 4) use the benefit stream paths to determine 

the cash distributions resulting from path-dependent events (such as performance-based vesting) 

and the effect of such distributions on end-point liquidation values; 5) using traditional priority 

rules, allocate the enterprise values determined in Steps 1-4 to the various equity classes; 6) 

discount the resulting payoff values by the risk-free rate (since the underlying asset has been 

simulated under risk-neutral conditions); 7) repeat these steps and take an average to conclude a 

final value for each equity class. [Chamberlain et al, 2007: 8] 

This model allows the analyst to set “conditions believed to resemble the ones that 

prevail in reality, and [launch] a collection of simulations around possible events,” where there 

are no constraints on the number of input variables that can be used, and the analyst can “. . . 

generate thousands, perhaps millions, of random sample paths, and look at the prevalent 

characteristics of some of their features.” [Taleb, 2004: 46]  

  Yet, the model is complex and involves a high degree of informed professional 

judgment throughout. For the simulation alone, the analyst must select those few variables that 

demonstrate significant influence over the resulting outputs, check for correlation among these, 

and ignore the rest. The analyst must also select the probability distribution and parameters for 

that distribution that represent a “best fit” for input variability. “ . . . [B]ut, picking the right 

distribution and the parameters for the distribution remains difficult for two reasons. The first is 

that few inputs that we see in practice meet the stringent requirements that statistical distributions 

demand . . . The second is that the parameters still need to be estimated after the distribution is 
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picked. . . . [yet the available data for this purpose is regularly insufficient or unreliable.]” 

[Damodaran, 2007: 165-167] The act of performing simulations may provide a mistaken sense of 

having rigorously investigated all aspects of a matter, when the adage “garbage in, garbage out,” 

still prevails. 

While this proposed methodology supplies a real-option like attempt to resolve what 

appear to be conflicting issues in more traditional methodologies and solve an important 

problem, it increases model risk by increasing model complexity and the need for subjective 

inputs without the true rigor of a real options approach. 

Model 2: Valuation of complex tax issues related to organizational form: A debate has 

raged in the valuation community for years regarding the effect on value of the tax attributes 

belonging to Sub-Chapter S corporations. Should S-corporations be assigned higher values than 

C-corporations based on their tax attributes? After all, 1) investors in S-corporations avoid 

paying the dividend tax at the individual level but C-corporation investors cannot avoid this tax 

(Note that both investor classes pay taxes on income earned at the corporate level.); and 2) S-

corporation shareholders can increase the tax basis in their stock through retained earnings, while 

C-corporation shareholders cannot. Even the Federal Tax Court has entered the debate, issuing a 

number of decisions since 1999 that have created further confusion and discussion.  

To address this issue and more precisely quantify any additional value that S-corporation 

status might bring to its shareholders, five valuation experts have developed models. Four of 

these, each named for its progenitor, are complex enough to be virtually proprietary, although 

they have all made their way into practical use to one degree or another. The fifth method, the 

“Simplified Model,” explains and compares the other four and offers a streamlined approach to 

modeling the same issues.  
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The fundamental components of the “Simplified Model” are: 1) A traditional discounted 

cash flow (which can be expanded for any holding period or contracted to a single period 

capitalization); 2) recognition of the benefit of the avoided dividend tax; and 3) recognition of 

the capital gains benefit of the ability to build up basis.” [Fannon, 2007: 4-1] The model requires 

the analyst to consider, select, and quantify the following assumptions: 1) Annual distribution 

percentages and amounts; 2) the probability that the likely hypothetical buyer, under a fair 

market value standard, will quality to maintain the S-corporation status; 3) the level of risk 

associated with shareholder ability, or lack thereof, to realize basis build-up; 4) the estimated 

holding period before the hypothetical buyer will “flip” his investment in the company; and 5) 

the federal income tax rates to be used for the company and the shareholders. [Fannon, 2007: 4-1 

through 4-2] 

Each assumption requires the analyst to apply varying degrees of informed professional 

judgment based on varying sets of facts and analyst perspectives. Model complexity and risk are 

increased due to the number of factors to be considered and path dependencies that cannot be 

addressed. More importantly, these models may suggest that, if a company’s tax attributes have a 

substantial influence on its value, should we not model the complete range of tax attributes of 

every company investigated during valuation analysis since companies have widely differing tax 

attributes based on their economic system design?  

This would require an approach to modeling the economic system of the firm that is not 

currently available within traditional valuation practice.  

A Simplified Model to Describe and Manage Complex Economic Systems 

In Strategic Investment: Real Options and Games, Drs. Hans Smit and Lenos Trigeorgis 

synthesize corporate finance, industrial organization, corporate strategy (strategic planning), and 
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value into a simplified model that describes and manages the complexity of the effect of firm 

optionalities and strategic games on value creation. Their basic premise is: 

“In the past decade, the strategic management field has seen the development of two 

main views. One view is that flexibility is valuable. As the competitive environment of most 

firms changes quite frequently, flexibility in investments should allow firms to optimize their 

investments and value creation. The other view is that commitment is valuable because it can 

influence the strategic actions of competitors. This creates the opportunity to realize better 

payoffs (and shareholder value). 

“Both views are supported by theoretical arguments and a large body of research. The 

flexibility view partly draws on the resource-based view of the firm and core-competency 

arguments: a firm should invest in resources and competencies that give it a distinctive chance to 

pursue a set of market opportunities. . . . The commitment view is firmly anchored in industrial 

organization and game theory, which during the nineties were increasingly adopted in the 

strategy field. 

“Since both views have a theoretical justification, a key question is under what 

circumstances each can inform strategic decisions.” [Smit & Trigeorgis: 2004, 35] Their 

response to their own question is: 

Expanded (strategic) NPV = (passive) NPV + flexibility (option) value + strategic (game 

theoretic) value 

Conceptually, they consider the firm as a portfolio of options, or “. . . ‘bundle of 

opportunities’ [requiring] a balance between exploiting current cash-generating advantages and 

generating new options.” The correlations and interactions (“interproject synergies”) and the 

“intertemporal (compound option) effects” among the firm’s strategic and operational projects 
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(options) as well as the risk attributes of various stages in these projects create the value of the 

firm (i.e. the portfolio of options). [Smit & Trigeorgis: 2004, 80-81] The value created by and 

within this portfolio can be quantified using a binomial option pricing model. This approach to 

valuing the firm’s portfolio of options provides a richer and more realistic assessment of value 

than traditional, linear discounted cash flow models. 

In addition, firms experience a “strategic impact” from the investment decisions they 

make in contexts in which they are aware of the actions and interactions of rivals that will affect 

project value. In such contexts, “[g]ame theory can be helpful in analyzing strategic investment 

decisions . . . [F]ollowing the rules of game theory can help reduce a complex strategic problem 

into a simple analytical structure consisting of four dimensions [(1) identification of the players, 

(2) the timing or order in which the players make their decisions, (3) the available actions and 

information set, and (4) the payoff structure attached to each possible outcome]. . . . [G]ame 

theory is also a helpful valuation tool for strategic decisions because it encompasses a solution 

concept that can help in understanding or predicting how competitors will behave, and it also 

provides an equilibrium strategy and values for the strategic decisions.” [Smit & Trigeorgis: 

2004, 171-172] Smit and Trigeorgis present an integrated model by which to discuss game 

theory in terms of real options analysis. This holistic model is simplistically described, 

following.  

When a firm engages in multistage (sequential) games under uncertainty and wishes to 

analyze its strategic choices using game theory analysis, management will build a strategic 

decision tree by which to lay out available choices and moves. By moving backward through this 

decision tree structure, much like the certainty-equivalent binomial tree used in real options 

analysis, the option value at each node of the tree can be calculated using risk-neutral 
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probabilities and options pricing methods. “This new approach makes it possible to value 

complete strategies in a competitive context in a fashion that is consistent with both modern 

economics and finance theory.” [Smit & Trigeorgis: 2004, 181] It also provides a simplified, but 

powerful, framework by which to investigate the effects of market competition and strategic 

planning on firm value. There are no traditional valuation tools that can address this important 

issue. 

The same model might also be used in two other ways. First, it could be applied to 

overall firm design, rather than discrete project/strategy design. Second, it could be applied to the 

concept of intra-organizational competition within a sub-corporate finance context [Nelson, 

2005]. Both applications would add new dimensions to our understanding of the firm and the real 

options “in” economic systems.  

A Layered Model that Reduces Complexity during Use 

“Real Options ‘in’ Projects and Systems Design – Identification of Options and Solutions 

for Path Dependency,” the Ph.D. dissertation by now Dr. Tao Wang, provides a rigorous 

discussion of the theoretical and computational aspects of real options “in” engineering systems. 

Wang’s dissertation has its origins in the seminal work of Dr. Richard de Neufville, his thesis 

supervisor, with whom he has published jointly a number of times. While, for practical reasons, 

this paper focuses on Wang’s dissertation, we should not overlook Dr. de Neufville’s 

overarching contribution to engineering systems design and real options “in” such systems. 

Although Wang investigates engineering system design, we suggest that the proposed 

principals and methods can be extended to and provide powerful applications for the design and 

valuation of economic systems in general and the firm in particular. This section will provide a 
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simplified overview of the proposed model in its original context. A later section will apply it to 

economic systems. 

The design of physical systems, such as large-scale engineering systems, involves 

identifying and incorporating a vast array of technical constraints (real options “in” the system) 

that are highly interdependent and path dependent, conditions that are not traditionally 

considered in calculating the real options value “on” firm projects. An example of such path 

dependency is the manner in which the power generating capacity of a downstream dam changes 

when an upstream dam is built. [Wang, 2005: 20]  

Traditional deterministic engineering systems design makes use of projected expected 

values of uncertain parameters, passive recognition of such uncertainties, and a focus on 

economies of scale. Dynamic engineering systems design of the sort proposed by Wang and de 

Neufville, considers “sequences of probability functions at multiple points in time,” proactive 

management of the uncertainties, and foci other than economies of scale. [Wang, 2005: 22, 23] 

More provocatively, Wang also mentions the need to consider “social stochasticity,” i.e. the 

economic and social consequences and uncertainties surrounding large-scale engineering project 

design, since “[a]ny technical systems are to serve human’s needs.” [Wang, 2005: 38] 

The following describes the context in which dynamic engineering systems design has 

become a necessity: “Engineering systems are increasing in size, scope, and complexity as a 

result of globalization, new technological capabilities, rising consumer expectations, and 

increasing social requirements. Engineering systems present difficult design problems and 

require different problem solving frameworks than those of the traditional engineering science 

paradigm: in particular, a more integrative approach in which engineering system professionals 

view technological systems as part of a larger whole. Though engineering systems are very 
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varied, they often display similar behaviors. New approaches, frameworks, and theories need to 

be developed to understand better engineering systems behavior and design.” [Roos, 1998 from 

Wang, 2005: 29]  Thus, engineering systems design and implementation require the 

consideration of high degrees of complexity and uncertainty, neither of which is properly 

captured using traditional, deterministic methodologies. Wang suggests a layered real options 

model that can address these challenges effectively. 

First, the distinction between real options “on” systems (as traditionally computed) and 

real options “in” systems must be understood. Real options “on” systems “treat the technology as 

a black box,” i.e. offer no consideration of or insight into the inner workings of the 

systems/projects they are valuing. [Wang, 2005: 106] Real options “in” systems consider the 

inner workings of system/project design to identify and provide flexibility (i.e., options) from the 

inside out.  

The reason why real options “in” projects are of special interest to the study of 

engineering systems is that large-scale engineering projects share three major features that are 

particularly amenable to real options analysis. “They: 

• Last a long time, which means they need to be designed with the demands of a 

distant future in mind; 

• Often exhibit economies of scale, which motivates particularly large construction; 

• Yet have highly uncertain future requirements, since forecasts of the distant future 

are typically wrong. 

“This context defines the desirability of creating designs that can be easily adjusted over 

time to meet the actual needs as they develop.” [Roos, 2004 in Wang, 2005: 107] Only some 

form of real options analysis could capture and quantify the flexibility required by such systems.  



 17 

The top layer of Wang’s approach is a screening model that answers the question: Which 

of the many options that present themselves in an engineering system are “most important and 

justify the resources for further study? The engineering system he uses as his test case is a dam 

building (i.e., water resources planning) project. 

“The screening model is established to screen out the most important variables and 

interesting real options (flexibility). The screening model is a simplified, conceptual, low-fidelity 

model for the system. Without losing the most important issues, it can be easily run many times 

to explore an issue, while the full, complete high-fidelity model is hard to establish and costly to 

run many times. From another perspective . . . we can think of it as the first step of a process to 

reduce the design space of the system.” [Wang, 2005: 138] The screening model involves 

simplifying assumptions such as allowing all sub-projects to be built at once and removing the 

stochasticity from all variables being explored (in this case, water flow and the price of 

electricity). If an important aspect of the project has been simplified in this manner, it should be 

studied in depth later, after the screening model is complete. In cases in which feedback exists in 

the system, the screening model must take it into account in order to ensure accurate results.  

The screening model uses non-linear programming to perform sensitivity analysis on key 

system parameters. Once optimal designs have been identified for each set of parameters, they 

are reviewed and compared for real options that are both “good” for all sets and also conducive 

to optimal value creation.  

The next layer in the overall model is a high-fidelity simulation model, through which the 

selected candidate designs are put. “Its main purpose is to examine, under technical and 

economic uncertainties, the robustness and reliability of the designs, as well as their expected 

benefits. . . . This process leads to refinement of the designs identified by the screening model.” 
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[Wang, 2005: 140] Standard water resource planning simulations use historical records to 

simulate stochastic variation in water flows. Wang’s model simulates both water flow and 

economic uncertainties in order to fully understand the role economies of scale should play, or 

not play, in the final design. 

Once the most promising real options in the project design have been identified, these 

options must be valued so that a primary strategy and related contingent strategies may be set. 

Wang suggests “recasting [a standard binomial lattice] in the form of a stochastic mixed-integer 

programming model [in which the binomial tree is maximized] subject to constraints consisting 

of 0-1 integer variables representing the exercise of the options (=0 if not exercised, =1 if 

exercised.” [Wang, 2005: 141, 142] “[S]uch reformulation empowers analysis of complex path-

dependent real options ‘in’ projects for engineering systems. 

“Technical constraints in the screening model are modified in the real options timing 

model. Since the screening and simulation models have identified the configuration of design 

parameters, these are no longer treated as design variables. On the other hand, the timing model 

relaxes the assumption of the screening model that the projects are built together all at once. It 

decides the possible sequence of the construction of each project in the most satisfactory designs 

for the actual evolution of the uncertain future.” [Wang, 2005: 152] 

To assist those readers who do not have an expertise in the kinds of programming used in 

this analysis, Wang provides the following descriptions: “Mathematical programming studies the 

mathematical properties of maximizing or minimizing problems, formulates real world problems 

using mathematical terms, develops and implements algorithms to solve the problems. 

Sometimes mathematical programming is mentioned as optimization or operations research. . . . 

Stochastic programming is the method for modeling optimization problems that involve 
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uncertainty. . . . In stochastic programming, some data are random, whereas various parts of the 

problem can be modeled as linear, non-linear, or dynamic programming. . . . A mixed integer 

programming problem is the same as the linear or non-linear problem except that some of the 

variables are restricted to take integer values while other variables are continuous.” [Wang, 

2005: 39, 40, 41, 42] One deficiency of stochastic mixed-integer programming is that it is 

difficult to tell if the result is a global or a local optimum. However, Wang maintains that the 

solution provided by this computational methodology, while it may be a local rather than a 

global one, is superior to the solutions offered by traditional methodologies or human intuition. 

In addition, once the problem is programmed, it can be executed easily and rapidly on an 

ordinary laptop computer. 

This layered approach to wringing the complexity out of and harvesting the value from 

engineering systems design suggests that, in spite of computational complexity, its application to 

economic systems should be further explored. 

III. Love, Death, Taxes and Real Options “in” Economic Systems 

Love, death and taxes – these are the inevitable, yet uncertain and risky, events of which 

life cycles and systems are composed. While we normally think of them in terms of human life 

cycles, they can be applied to economic life cycles as well, under different names. The 

description and quantification of love, death and taxes in human life are left to the social 

sciences, statisticians, actuaries, and poets. But the description and quantification of these in 

economic systems remain the task of economics, finance, and valuation. As economic systems 

become increasingly complex and dynamic and the universal language of historical accounting is 

being altered, the theory and tools we use in economics, finance, and valuation are beginning to 

prove inadequate to the tasks being required of them. Hence, there is a need to consider new 
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avenues of thought and new tools. In this section, we explore the potential use of real options 

“in” systems design as a means to achieve more rigorous and insightful results in the design and 

valuation of the economic system of the firm.  

What are economic systems? While there might be many informative responses to this 

question, the description of dynamic engineering systems provided by Wang earlier in this paper 

offers an interesting place to start. As with engineering systems, economic systems come in 

many sizes and forms. They can be as large as the global marketplace, a national economy, an 

industry, or a firm. They can be as small as a family unit, though no smaller since any system 

requires more than one agent to exist. Similar to other systems, economic systems are governed 

by explicit and implicit rules that affect all agents within the system in varying ways. The kinds 

and combinations of rules in a particular economic system allow it to be put into general system 

categories such “capitalism,” “oligopoly,” or “start-up.” Economic systems should be open, 

complex, and adaptive - living. If they are not, they may be kept on life support but eventually 

they will die (as in the demise of the Iron Curtain) or rupture open in an unmanageable chaos of 

birthing (as with the hyper-capitalism being born out of that closed system, the People’s 

Republic of China). Why? Because economic systems are created by and built upon open, 

complex, adaptive, living biological systems called human beings and life must beget life. 

What is the dilemma this creates for those who study them? The very life-bearing 

properties of these systems, however, have created a dilemma. Until fairly recently, only limited 

means have been available to describe them quantitatively without the use of highly simplified, 

linear, deterministic models. While much of this is due to a general absence of powerful yet 

accessible technological tools, most of it is due to the fact that it is just plain more direct and less 

time-consuming to think about and use deterministic models. A broad-brush approach has been 
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considered sufficient for most decisions and transactions. In addition, until fairly recently, those 

guardians of the national economic systems, the regulators, agreed. 

Strangely enough, increasingly draconian oversight by the regulators may push 

theoreticians and practitioners in economics, finance and valuation to finally embrace approaches 

and methodologies that properly reflect the true nature of the economic systems they describe, 

measure, and manage. Real options analysis is one such approach. 

The Firm as an Economic System 

There are almost as many theories of the firm as there are researchers to build them. Such 

theories have been amply explored elsewhere and do not need re-examination. The goal here is 

to establish a solid foundation for the use of real options “in” the firm as an economic system. In 

order to accomplish this, we need to demonstrate: (1) that the inner life of the firm resembles a 

market in which risk and reward are critical determinants of value; and (2) that the firm is open, 

dynamic, complex, and adaptive like other systems. 

Is the firm a market? The following description may help draw the parallel between the 

market endogenous to the firm and that exogenous to it. “Firm core processes are market 

participants, or agents, and are dynamically combining and recombining into portfolios of 

capabilities, while also competing for scarce resources (capital, knowledge assets, and 

infrastructure). Each core process is made up of a portfolio of sub processes (e.g., “supply 

chain”) that enables it to carry out activities and produce outputs. Each core process is affected 

by the risk and uncertainty, the availability of resources, the property rights, the transaction costs, 

and the real investment options available to the firm and to other core processes within the firm. 

“ . . . [The] firm is more than the sum of its parts (processes), since these parts are 

constantly overlapping, competing, and shifting dynamically internally and externally as they 
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interact with stakeholders and competitors. [In addition, the] firm and its agents (processes) are 

characterized by change, uncertainty, and risk. Differences between [exogenous markets and 

endogenous markets] with regards to change, uncertainty and risk are a matter of degree not 

kind. It is arguable as to which market experiences a higher degree of change, uncertainty and 

risk. 

“The [firm] is created and maintained by various kinds of individual, institutional, and 

organizational investors and stakeholders. . . . Top management functions much like an 

investment fund or portfolio manager, deciding where to allocate scarce resources and add or 

divest investments that allow the firm to continue to function with varying degrees of health. 

Each core process has its own management team that also functions much like a portfolio 

manager.” [Nelson, 2005: 39] These characteristics of the endogenous market of the firm are 

virtually identical to those of the exogenous market. 

How do risk and reward factor into this “market” of the firm? There are many 

commonly discussed and important sources of risk and reward to the firm. Some are exogenous 

and some endogenous to it. All must be considered when discussing corporate strategy, 

considering corporate projects or transactions, attempting to identify the key value drivers of a 

firm or value the firm itself, invest in it or close it down. The challenging and ever changing 

nature of risk and its relationship to reward is perhaps the biggest source of discussion and 

debate in the boardroom, the halls of academia, the offices of practitioners, and on “The Street.” 

Assessments of risk and reward are key components of value. Yet, as the economic system of the 

firm becomes increasingly complex and sophisticated and path dependencies between sources of 

risk and reward increase, traditional assessment approaches have less and less appeal. 
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While we can talk about risk and reward in the firm in relationship to its environment, we 

have not had any mechanism by which to discuss these issues as they relate entirely to the 

internal life system of the firm. The intention of this paper is not to discuss this problem in any 

detail, though it is a pressing one. However, a brief description of a proposed solution follows in 

order to provide a complete picture of the variables that might be addressed by the practice of 

real options “in” the economic system of the firm. 

In 1998, Drs. Kanevsky (mathematics) and Housel (computer science) proposed a nugget 

of theory that opened the door to a different view of firm risk and reward. They suggested that it 

was possible to describe all organizational outputs in terms of common units of change. They 

stated, “Businesses are open systems – systems that exchange substance and energy with their 

environments. As such, businesses have the capability, through their processes, to change the 

structure of raw material inputs (i.e., substance, energy, information) into final products/services. 

In the language of thermodynamics, this change in structure can be measured in terms of the 

corresponding change in entropy, when the input state a is transformed into output state b by 

process P (i.e., b = P(a)). Assume that this change can further be represented as a set of 

‘elementary’ changes that are minute enough to become identical in terms of the corresponding 

amount of entropy they cause. This assumption about the equivalence of elementary changes can 

be expanded across any finite number of processes with predetermined outputs. This allows the 

comparison in terms of entropy among any set of processes by means of elementary changes. . . . 

“This concept can be applied to calculating the value added by business processes by 

calculating the entropy of K-complexity caused by the process to transform an input to its 

process output. To accomplish this, we will employ the parallelism between business processes 

and computations. . . .” [Kanevsky and Housel, 1998: 278-80 from Nelson, 2005: 5-6] 
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“Since a unit of K-complexity represents a unit of change and is equivalent to a unit of 

Shannon information, all process outputs can be standardized by describing them in terms of the 

number of units of Shannon information (i.e., bits) required to produce them, given the state of 

the technology used in the process. 

“All outputs can also be described in terms of the time required by an ‘average’ learner to 

learn how to produce them. ‘Learning Time’ can be considered a surrogate for the amount of 

organizational knowledge required to produce the outputs . . . [allows us to] describe outputs in 

terms of learning time [and to assign] a common unit, the Knowledge Unit ( Kµ ), . . . to represent 

the amount of organizational knowledge required to produce the outputs.” [Nelson, 2005: 7] 

Although the manner in which this theoretical base can be applied in practice is not 

pertinent to this paper, the proportionality between units of change, units of Kolmogorov 

Complexity, and units of information have profound implications for the concept of the firm as 

an economic system and the quantitative measurement of sub-corporate risk and reward. The 

following further develops the notion of sub-corporate risk and reward based on common units 

of change. 

“Entropy is the term that describes the reduction of energy to a state of maximum 

disorder in which each individual movement (activity) is neutralized by statistical laws. Left to 

itself, an isolated system tends toward a state of maximum disorder, i.e. highest probability. 

Boltzmann stated, ‘In an isolated system, the system will evolve to its most probable state, that 

is, the one with the most homogeneous probability distribution,’ (e.g. the Law of Large 

Numbers). In a state of homogeneity (or, highest entropy or uncertainty), we have no indication 

at all to assume that one state is more probable than another.  
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“Information is a probabilistic measure of reduction in uncertainty (entropy). The 

following formula, developed by Claude Shannon, expresses the probabilistic relationship 

between entropy and information, for all possible states 1 . . . n : 

( ) ( ) ( )21
H log

n

i
x p i p i

=
= − Σ  

   
Where: 

H  =  Entropy 

x =  A discrete random event 

p =  Probability distribution 

i =  Outcome 

 
“H is maximized if all states are equi-probable (a state of homogeneity), since when there 

is no pattern, there is no information and entropy and information are opposites. H is 0 if p(i) = 1, 

since the system is in a state of maximum certainty or complete information.  

“Randomness, entropy, probability, and uncertainty are equivalent terms. Their 

opposites are pattern, complexity, information, and certainty which are also equivalent terms. 

“. . . In investing activities, we could call process P a ‘transaction’ that structures input 

Asset A into output Asset B. The structural change that occurs during a transaction process (TP) 

involves a change in uncertainty (entropy, Kolmogorov complexity) as Asset A undergoes a state 

transformation to become Asset B. The monetization of this change in uncertainty from Asset A 

to Asset B is what we commonly call ‘return on investment.’ It is also the ‘value added’ by TP. 

“[Using this notion, we might consider the term] risk to be a descriptor for the change in 

uncertainty (∆Φ) related to the state transformation of Asset A into Asset B via TP. As such, it is 

a rate and is composed of two elements: (1) volatility, the magnitude of change in uncertainty; 

and (2) growth, or, drift, the direction of change in uncertainty. The ‘expected return’ (i.e., 
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expected ∆Φ) for Asset A remains the baseline against which to estimate the risk (i.e., actual ∆Φ) 

related to Asset B regarding the state transformation taking place via TP.  

“Thus, when we adjust cash flows for risk we are providing an estimate of the ∆Φ that 

will be assigned to those cash flows as they undergo a state transformation via TP.  

“Since ∆Φ is also a descriptor for ‘return on investment’ we now have a . . . way of 

describing the relationship between risk and return, e.g. they are equivalent. . . . Risk is actual 

∆Φ and return is expected ∆Φ, which enables us to use the traditional notion of matching actual 

risk with expected return. 

“In addition, although risk is commonly described in the literature (Mun, 2002 and many 

others) as interchangeable with uncertainty, [this] approach indicates that risk is no longer 

interchangeable with uncertainty. Risk is the change in uncertainty (∆Φ), not the uncertainty 

itself.  

“. . . If we apply the proportionalities we described [earlier] in which ∆E (change in 

entropy, uncertainty) ≈ K(y|x) (conditional Kolmogorov complexity) ≈ bits ≈ Kµ, and we agree 

that risk is a change in uncertainty (∆Φ), then risk and Kµ are also proportionate and represent 

the same common unit of measure.  

“As a result, we suggest that measuring the change in entropy embodied in process 

outputs of the organization in common units, Kµ, is equivalent to measuring risk. This in turn ties 

risk measurement directly to the knowledge assets of the organization and only indirectly to the 

movements of ‘the market’ and competitors.” [Nelson, 2005: 28-29, 30, 31]  

While this set of concepts is not currently in practice, it provides new avenues of thought 

and further rationale for considering the firm as a true economic system, complete with its own 

endogenous, quantifiable sources of risk and reward. 
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In what way is the firm a complex adaptive system rather than just a portfolio of 

resources, options, rights, knowledge assets, or projects? “The [firm] . . . exhibits all the 

attributes of a complex adaptive system. (1) It is a network of many agents acting in parallel, in 

an environment produced by the interactions of all agents on each other, and in which system 

control is highly dispersed. (2) It has many levels of organization, with agents at one level 

serving as building blocks for agents at a higher level, and in which the system is constantly 

revising and rearranging building blocks as it adapts and gains experience. (3) It anticipates the 

future by constantly making predictions based on its internal models of the world, its implicit and 

explicit assumptions of the way things are within the system. (4) It has many niches being 

exploited by agents adapted to fill each niche. The very act of filling a niche opens up more 

niches, creates new opportunities. Therefore, the [firm] is never in equilibrium because it is 

always unfolding, always in transition. [Waldrop, 1992:145-147] 

“As an open, complex, adaptive system, the [firm] maintains a state of homeostasis – one 

of the most remarkable and typical properties of highly complex open systems. A homeostatic 

system maintains its structure and functions by means of a multiplicity of dynamic equilibriums 

rigorously controlled by interdependent regulation mechanisms. Such a system reacts to every 

change in the environment, or to every random disturbance, through a series of modifications of 

equal size and opposite direction to those that created the disturbance. The goal of these 

modifications is to maintain the internal balances. In a sense, the [firm] as an open system in 

homeostasis will be in a state of 100% information and risk (∆Φ). This state corresponds to Dr. 

Stephen Wolfram’s complexity theoretic universality class IV, the edge of chaos, the state in 

which ‘[o]rder and chaos intertwine in a complex, ever-changing dance of submicroscopic arms 
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and fractal filaments’ and life originates.” [Waldrop, 1992:230, 231; Wolfram, 2002 from 

Nelson, 2005: 35-36] 

Applications of Real Options “in” the Economic System of the Firm 

Once we have established the firm as an economic system in its own right, complete with 

sources of risk and reward, we can begin to look at firm design and valuation from fresh 

perspectives. Just as engineering systems design and implementation require the consideration of 

high degrees of complexity and uncertainty, neither of which is properly captured using 

traditional, deterministic methodologies, so the design, implementation, and valuation of the 

economic system of the firm faces the same issues. The Wang layered real options model may 

also address these challenges to the firm effectively. 

To illustrate this, consider the two examples of complex valuation problems discussed in 

Section Two.  

Love: Complex capital structures arise from business acquisitions or in anticipation of 

business acquisitions. Both parties to the transaction hope that true love today will bloom into 

stunning riches tomorrow – while protecting themselves with “prenups” by designing safeguards 

into the structure of this future relationship. Although Wang’s layered real options model is 

ideally suited for transaction design (pre-acquisition), we suggest it can also be considered for 

post-acquisition valuation purposes. The model would explore the real options available “in” the 

capital structure due to the need to optimize firm value under varying liquidity event scenarios 

and value them, including path dependencies, using stochastic mixed-integer programming. 

Taxes: The complexity and range of the tax attributes of firms is enormous as firms seek 

to minimize the effect of taxes on corporate and investor wealth. As stated earlier, once we begin 

to take tax attributes into account for one aspect of the firm (here, its organizational structure), 
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would it not be useful to also consider the effect of taxation on other value-creating or value-

destroying aspects? Currently, the valuation of intangible assets under SFAS 141 includes 

quantification of the future tax benefits attributable to the amortization of such assets. In 

addition, when valuing privately held companies and using public companies as benchmarks, we 

are forced to ignore the tax attributes and tax rates of those public firms since they vary so 

widely and, in fact, may not be available to “outsiders.” Yet, this is just the tip of the iceberg. If 

we look at the practice of financial accounting, much or most of its complex rules begin and end 

in issues of taxation. Take methods to record inventory or depreciate tangible assets as examples. 

Wang’s proposed layered model to explore taxation real options “in” the firm could 

provide assistance to financial managers and others who perform various aspects of 

organizational design, to executives during transactions, to valuation analysts who need to 

quantify tax effects and put them into financial statements. While considering the effects of 

taxation on every aspect of the firm seems both unnecessary and burdensome, using Wang’s 

screening model, for instance, could narrow the design space for a particular firm and reduce the 

number of options for consideration under the simulation and real options models. Once the 

basic configuration of the model was established for a particular firm, it could be revisited and 

“tweaked” over time without having to start over again from the beginning. 

Bigger fish: These are but two of the many complexities and value-creating-destroying 

issues that are investigated by valuation professionals on an hourly basis. Currently, we are 

forced to consider all of them sequentially. Yet, we know they actually represent 

interdependencies as well as path dependencies. What about the synergies among the various 

tangible and intangible resources, projects, core processes, or business units of the firm that we 

know are primary firm value drivers? What difference does it make to value if we look at the 
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firm as a portfolio of resources, options, contractual rights, or projects? Theoretically, we could 

utilize Wang’s methodology to consider several of these views simultaneously to see which one 

was a “best fit” to the specific facts and circumstances of a particular firm or to better understand 

how a firm might be a synergistic combination of all of them. 

We suggest that, using Wang’s proposed models to develop a rigorous and accessible tool 

for the practice of real options “in” the economic system of the firm, we could potentially 

address a much larger swath of the system design space simultaneously and provide richer, more 

firm-specific, useful valuations.  

Looking even further out, if the practice of real options “in” the economic system of the 

firm proved fruitful, it might also prove fruitful for government as it considers and evaluates 

moves that affect a national economic system.  

The Obstacle of Computational Complexity 

 Computational complexity is a very real obstacle to the further exploration and 

utilization of Wang’s model for real options. “Stochastic Programming: Computational Issues 

and Challenges,” attached to this paper as Exhibit A, discusses in this obstacle in some depth. 

The question we must ask ourselves at this juncture is whether it is preferable to make 

increasingly complex, sequential, and subjective adjustments to various traditional model 

variables in order to attempt to capture firm complexity or to explore and build complex 

computational models that can be run on an average laptop computer and embed the ability to 

investigate the effects of all variables simultaneously. The former eventually leads us so deeply 

into a maze of informed professional judgment that we lose all sense of reality concerning the 

specific “firm as economic system” we are valuing. The latter, while requiring the use of 

informed professional judgment in structuring the rules by which the programming models are 
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built, might allow us to explore large design/valuation spaces while minimizing the role of 

subjectivity and/or speculation. 

Simple, deterministic computations built on convoluted estimates and opinions, or 

complex, dynamic computations built on simple rules and judgment calls? That may be the 

choice facing us in this matter. 

IV. Where do we go from here and why does it matter? 

Clearly, further research must be performed to understand if the Wang model can be 

extended in the manner proposed herein, within the time and resource constraints of normal firm 

and consulting environments. Then the challenges of building the models for the design space of 

an economic system must be addressed. In addition, it would be highly beneficial if 

consideration was given to means of applying the Smit-Trigeorgis model side by side the Wang 

model, since strategy and competitive games are major sources of value in firms. If these 

challenges could be successfully addressed and the resulting computational models made readily 

available to the finance and valuation communities, only our imaginations would be the limit to 

the further applications of these concepts. 

Why does this matter? We return to the humdrum of financial accounting. Accounting 

regulators want accounting to function like finance, leading to the corruption of financial 

statements and market data and the effective disaggregation of the firm into a collection of 

resources and claims against them. But traditional finance and valuation do not currently have 

the tools or concepts to solve this problem. Both disciplines are being required to do what neither 

can. 

We believe that the practice of real options “in” economic systems might be an answer. 
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Exhibit A 

Stochastic Programming: Computational Issues and Challenges 

 



From Encyclopedia of OR/MS, S. Gass and C. Harris (eds.)

Stochastic Programming: Computational Issues and Challenges

Suvrajeet Sen

SIE Department

University of Arizona, Tucson, AZ 85721

Introduction

Stochastic programming deals with a class of optimization models and algorithms in which

some of the data may be subject to signi�cant uncertainty. Such models are appropriate

when data evolve over time and decisions need to be made prior to observing the en-

tire data stream. For instance, investment decisions in portfolio planning problems must

be implemented before stock performance can be observed. Similarly, utilities must plan

power generation before the demand for electricity is realized. Such inherent uncertainty

is ampli�ed by technological innovation and market forces. As an example, consider the

electric power industry. Deregulation of the electric power market, and the possibility of

personal electricity generators (e.g. gas turbines) are some of the causes of uncertainty

in the industry. Under these circumstances it pays to develop models in which plans

are evaluated against a variety of future scenarios that represent alternative outcomes of

data. Such models yield plans that are better able to hedge against losses and catas-

trophic failures. Because of these properties, stochastic programming models have been

developed for a variety of applications, including electric power generation (Murphy et

al [1982]), �nancial planning (Cari~no et al [1994]), telecommunications network planning

(Sen et al [1994]), and supply chain management (Fisher et al [1997]), to mention a few.

The widespread applicability of stochastic programming models has attracted considerable

attention from the OR/MS community, resulting in several recent books (Kall and Wal-

lace [1994], Birge and Louveaux [1997], Pr�ekopa [1995]) and survey articles (Birge [1997],

Sen and Higle [1999]). Nevertheless, stochastic programming models remain one of the

more challenging optimization problems.

While stochastic programming grew out of the need to incorporate uncertainty in linear

and other optimization models (Dantzig [1955], Beale [1955], Charnes and Cooper [1959]),

it has close connections with other paradigms for decision making under uncertainty. For

instance, decision analysis, dynamic programming and stochastic control, all address simi-

lar problems, and each is e�ective in certain domains. Decision analysis is usually restricted

to problems in which discrete choices are evaluated in view of sequential observations of dis-
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crete random variables. One of the main strengths of the decision analytic approach is that

it allows the decision maker to use very general preference functions in comparing alter-

native courses of action. Thus, both single and multiple objectives are incorporated in the

decision analytic framework. Unfortunately, the need to enumerate all choices (decisions)

as well as outcomes (of random variables) limits this approach to decision making problems

in which only a few strategic alternatives are considered. These limitations are similar to

methods based on dynamic programming, which also require �nite action (decision) and

state spaces. Under Markovian assumptions the dynamic programming approach can also

be used to devise optimal (stationary) policies for in�nite horizon problems of stochastic

control (see also Neuro-Dynamic Programming by Bertsekas and Tsitsiklis [1996]). How-

ever, DP-based control remains wedded to Markovian Decision Problems, whereas path

dependence is signi�cant in a variety of emerging applications.

Stochastic programming (SP) provides a general framework to model path dependence of

the stochastic process within an optimization model. Furthermore, it permits uncountably

many states and actions, together with constraints, time-lags etc. One of the important

distinctions that should be highlighted is that unlike DP, SP separates the model formula-

tion activity from the solution algorithm. One advantage of this separation is that it is not

necessary for SP models to all obey the same mathematical assumptions. This leads to a

rich class of models for which a variety of algorithms can be developed. On the downside

of the ledger, SP formulations can lead to very large scale problems, and methods based

on approximation and decomposition become paramount. In this article, we will provide

a road map for these methods, and point to fruitful research directions along the way.
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Mathematical Models and Properties

Consider a model in which the design/decision associated with a system is speci�ed via

vector x1. Under uncertainty, the system operates in an environment in which there are

uncontrollable parameters which are modeled using random variables. Consequently, the

performance of such a system can also be viewed as a random variable. Accordingly, SP

models provide a framework in which designs (x1) can be chosen to optimize some measure

of the performance (random variable). It is therefore natural to consider measures such

as the worst case performance, expectation and other moments of performance, or even

the probability of attaining a predetermined performance goal. Furthermore, measures

of performance must reect the decision maker's attitudes towards risk. For example in

the �nancial literature, it is common to model risk aversion through the use of a utility

function.

The following mathematical model represents a general SP formulation in which the

design/decision variable x1 is restricted to the set X1, and ~!1 denotes a multi-dimensional

random variable.

Min
x12X1

f1(x1) + E[h2(x1; ~!1)] (1a)

s:t: P [g1(x1; ~!1) � 0] � p1 (1b)

Here E denotes the expectation with respect to ~!1 and P denote the probability distribu-

tion associated with ~!1. The function g1 is often modeled by a linear function and h2 is

the value function of another optimization problem as follows:

h2(x1; !1) = Min
x22X2(x1;!1)

f2(x2;x1; !1):

In the SP literature, the function h2 is used to reect costs associated with adapting

to information revealed through an outcome !1. In �nancial applications, this function

may reect the utility associated with costs of rebalancing the portfolio. Because the

function E[h2] is associated with a recourse action, it is referred to as the recourse function.

Constraint (1b) is called a probabilistic (or chance) constraint. Such a constraint is used to

model system reliability. We should mention that formulation (1) is somewhat more general

than one usually �nds in the SP literature. Historically, the probabilistic constraint (1b) is

treated separately from models using the recourse functions (1a). However, including both

types of functions within a model allows us to view the SP problems in a more cohesive

manner.
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While model (1) appears somewhat static, it is not di�cult to glean a dynamic element

in the formulation: note that the function h2 is realized only after the design x1 is in place.

This sequential nature is an essential element of decision making under uncertainty. Indeed,

if we de�ne h2 recursively, problem (1) may be looked upon as the �rst stage problem of

a more extensive multistage formulation. To present the multistage generalization of (1),

consider an N stage problem. Let the boundary conditions be given by hN+1 = 0 and let

~!0 denote a degenerate random variable reecting the deterministic information available

prior to decisions in stage 1. For t = 1; : : : ; N , let �t denotes the history prior to stage t

(i.e �t = (!0; : : : ; !t�1)). Note that the decision variables in stage t depend on the history

of the data process. Hence these variables are functions of random variables, and will be

denoted xt(�
t). The entire history of decisions until stage t will then be represented as a

superscripted vector xt(�t) = (x1(�
1); x2(�

2); : : : ; xt(�
t)), or simply xt. For t = 2; : : : ; N ,

we can now de�ne the value functions

ht(x
t�1; �t) = Min

xt2Xt(xt�1;�t)
ft(xt;x

t�1; �t) +E[ht+1(x
t; ~�t+1j�t)]

s:t: P [gt(x
t; ~�t+1j�t) � 0] � pt;

where E denotes the conditional expectation and P denotes the conditional probability

associated with the appropriate random variables. Using these functions in (1) yields a

multistage SP formulation.

While we have used a DP-type recursion to state the SP problem, it is important to note

that all random variables are path dependent, and furthermore, unlike DP, the statement

of the problem does not constitute the algorithm. In fact, alternative statements of the

multistage problem are also possible. Consider a formulation in which we allow the deci-

sions to depend on the entire realization �N . Let xN (~�N) denote a sequence of random

vectors (x1(~�
N ); x2(~�

N ); : : : ; xN (~�
N)). It is important to note that such a policy cannot

be implemented since decisions in stage t require the knowledge of the entire realization!

Hence, the plans (denoted xN (~�N )) cannot be feasible, unless, the decisions are such that

xt depends only on data available until stage t � 1. As shown below we can incorporate

such information constraints explicitly.

Let !t � (!t; : : : ; !N ). Since any outcome �N = (�t; !t) for any t, the decisions in stage t

can be represented as a random vector denoted xt(~!
tj�t). Then the information constraints

(also called the nonanticipativity constraints) may be stated as

xt(~!
tj�t)� E[xt(~!

tj�t)] = 0 almost surely:
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Since a non-separable objective function can be written as E[f(xN(~�N ); ~�N)], the inclusion

of information (nonanticipativity) constraints provides a legitimate multistage model which

does not appeal to either separability or recursion.

The formulations presented above impose very few restrictions. Perhaps the most impor-

tant restriction imposed in a SP formulation arises from the assumption that randomness

is exogenous and cannot be a�ected by decisions. In certain design problems, such an

assumption may not be valid, and in these cases, the models outlined above are inade-

quate. Nevertheless, there is a large class of applications where randomness is exogenous

(e.g. weather, loads, prices of �nancial instruments, market demands etc.), and SP models

provide a sound approach.

The main challenge in designing algorithms for stochastic programming problems arises

from the need to calculate conditional expectation and/or probability associated with

multi-dimensional random variables. For all but the smallest of problems, we resort to

approximations. The study of stochastic programming algorithms has therefore led to

alternative ways of approximating problems, some of which obey certain asymptotic prop-

erties. This reliance on approximations has prompted researchers to study conditions for

the convergence of approximations, and/or the convergence of solutions of approximate

problems (to a solution of the original). Of course, conditions ensuring the former imply

the latter, but the converse does not hold. Issues related to convergence of approximations

can be addressed through the theory of epi-convergence (King and Wets [1991], Rockafellar

and Wets [1998]) whereas issues pertaining to convergence of solutions of approximations

(to a solution of the original) can be addressed through the notion of epigraphical nesting

(Higle and Sen [1992], [1995]).

The computational challenges associated with SP problems vary a great deal with the

class of problems being addressed. As with any large scale optimization problem, exploiting

properties and the structure of problems provides the key to e�ective algorithms. We

discuss properties associated with some important classes of SP problems, and then proceed

to discuss the computational issues.

Some Properties of Stochastic Linear Programs with Recourse

For this class of problems, all functions and constraints are de�ned by linear/a�ne

functions, and the probabilistic constraints are absent. This remains one of the more

widely studied models, and most of the applications reported in the literature belong to this
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category (including the applications mentioned earlier). Problems of this type can be shown

to be convex optimization problems, and the full power of convex analysis can be brought to

bear on such problems. Notwithstanding such mathematical attractiveness, SLP problems

lack one of the more desirable numerical properties, namely, smoothness. Only under

very special circumstances (absolute continuity of random variables, Kall [1976]), can one

expect (1a) to be di�erentiable.

Some Properties of Stochastic Mixed Integer Linear Programs

For this class of problems, we continue with the absence of probabilistic constraints. In a

stochastic mixed integer linear program (S-MILP), if only the �rst stage decisions include

integer restrictions, then the remaining problem inherits the properties of a SLP. This

class of problems (with �rst stage integer variables) is similar to the problems originally

envisioned by Benders in his seminal paper (Benders [1962]). In general though (i.e when

integer variables appear in future stages) the S-MILP is much more challenging. For such

problems, convexity of the objective function is far too much structure to expect. Indeed,

the objective function (1a) can be discontinuous. However, by assuming that any setting

of decision variables yields a �nite objective value (i.e. complete recourse), and assuming

a weak covariance condition (Schultz [1993]) the objective function can be shown to be

lower semicontinuous.

Some Properties of Probabilistically Constrained Problems

These models are widely used to reect grade of service constraints (e.g. Medova [1998]).

The early work for this class of problems was restricted to normally distributed random

variables. Pr�ekopa [1971] showed that a much larger class of random variables yield the

convexity property; he showed that if the function g (see (1b)) is linear/a�ne in x and

randomness only appears additively, and the random variable has a log-concave proba-

bility density function, then the resulting feasible region is convex. However, for discrete

random variables this is no longer true, and in this case, the set of feasible solutions can

be represented as a disjunctive set (Sen [1993]).
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Computational Issues and Challenges

The main computational challenges can be attributed to presence of multi-dimensional in-

tegration (to calculate either expectation or probability) within an optimization algorithm.

Even in cases where the random variables are discrete, the total number of outcomes of a

multi-dimensional random vector can be so large that calculations associated with the sum-

mations may be far too demanding. Hence even in the case of discrete random variables,

one may have to resort to approximations. Discretizations and/or aggregations in multi-

stage problems result in alternative data scenarios or sample paths. These scenarios may

be organized in the form of a scenario tree which is a structure representing the evolution

of information over the stages. In such a tree, two scenarios that share a common history

until stage t are indistinguishable until that stage, and thereafter they are represented by

distinct paths. Thus every distinct scenario represents a path from the root node to a leaf

node of the scenario tree. In the absence of appropriate approximations, these trees can

become extremely large, and the model di�cult to manage and solve.

There are essentially two major approaches to generating approximations. One is based

on aggregating data points, and another based on selecting data points. The former class

of algorithms lead to successive approximation methods in which �ner discretizations of the

sample space are created based on the solution of an aggregated stochastic program. Meth-

ods based on data aggregation and successive re�nements have been forwarded by several

authors, and a survey for two stage problems can be found in Frauendorfer [1992]. More

recently, Edirisinghe and Ziemba [1996] have reported solving two stage problems with

approximately 20 random variables. For multistage problems, data-aggregation methods

have been proposed in Frauendorfer [1994], but computational results are very limited.

The idea of selecting data points to create approximations arises mainly in the context

of sample-based algorithms. If one uses a �xed sample, then it is necessary to perform a

statistical analysis of the output, as suggested by the work of Romisch and Schultz [1991]

and Shapiro [1991]. To obtain asymptotic results, Shapiro and Homem-de-Mello [1998]

(see also sample path optimization, Robinson [1996]) suggest solving a sequence of sam-

pled approximations, with increasing sample sizes. As the approximating problem becomes

larger, each iteration may become substantially demanding. In order to speed up compu-

tations associated with such a method, it may be advantageous to update approximations

generated in earlier iterations. One such method for two stage problems is the stochastic

decomposition (SD) algorithm (Higle and Sen [1991]) which incorporates sampling within
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a decomposition method. This combination allows the SD method to update approxima-

tions from one iteration to the next, thus allowing matrix updates and warm starts during

re-optimization. Because sampling and decomposition are intimately interwoven in the SD

algorithm, it allows the possibility of using empirical data directly within the algorithmic

process. A detailed exposition of this work appears in Higle and Sen [1996], and recent re-

sults are summarized in Higle and Sen [1999]. As with methods based on data-aggregation,

computational results with sample-based algorithms for multistage problems are extremely

limited.

Most of the approximation schemes mentioned above are paired with some deterministic

algorithm. This genre of methods traces back to the L-shaped method of Van Slyke and

Wets [1969] which builds on arguments similar to Benders' decomposition (Benders [1962])

for two stage problems. The method has been extended in several ways, including gener-

alizations to multistage problems (Birge [1985]). When the number of scenarios is small,

these methods can be applied directly. Otherwise, they should be used in conjunction with

approximation-based methods such as those discussed above.

Another class of deterministic decomposition algorithms is based on relaxing the infor-

mation (nonanticipativity) constraints. This approach is particularly promising for paral-

lelizing algorithms for multistage problems. Two such methods are the progressive hedging

method of Rockafellar and Wets [1991] and diagonal quadratic approximation method of

Mulvey and Ruszczy�nski [1995]. One of the biggest advantages of these methods is that

they retain the structure of a deterministic counterpart (e.g. network structure) and are

easily parallelizable. Furthermore, each processor can be allocated a collection of scenarios

which can be coordinated with minimal oversight. Nielsen and Zenios [1993] report signif-

icant speed-ups of their parallel implementation over a serial code. It would be interesting

to design sample-based algorithms of this type, and although some preliminary steps have

been taken, it is too early to tell how such methods will perform.

One of the more demanding problems in stochastic programming involves the solution

of stochastic mixed integer linear programs (S-MILP). In cases where the �rst stage has

binary variables, Laporte and Louveaux [1993] have proposed an extension of the L-shaped

method for two stage S-MILP problems. Unfortunately, it requires that the second stage

problem (possibly a mixed-integer linear program (MILP)) be solved to optimality. Given

the computational di�culties associated with MILPs, this is cumbersome. One possible

way to alleviate this di�culty may involve an extension that incorporates the stochastic
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branch and bound algorithm proposed by Norkin, Ermoliev and Ruszczy�nski [1998]. Since

the latter allows the use of sampled bounds, it may provide a more computationally feasible

approach to practical S-MILP problems.

Finally, one area that has not attracted as much attention as it should is the development

of software systems which integrate stochastic modeling with stochastic programming al-

gorithms. Such a system would provide software tools to build models, validate them, and

experiment with alternative algorithms. With few exceptions (e.g. Kall and Mayer [1996]

and Gassmann and Ireland [1996]), there has been relatively little activity in this impor-

tant area. It is unlikely that stochastic programming will attain its potential without

the development of systems which allow easy interactions between stochastic models and

stochastic programming algorithms. The development of a high level language or system

that allows manipulation and representation of models and data, together with the ability

to experiment with alternative solvers, is long overdue.

Before closing this article, we should point the reader to an extensive list of papers

maintained by Maarten van der Vlerk at the following web site.

http://mally.eco.rug.nl/biblio/SPlist.html
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